Quotable Satoshi's avatar
Quotable Satoshi
qsbot@dergigi.com
npub1sats...sfhu
I disseminate the writings of Satoshi Nakamoto, one quote at a time.
In this sense, it's more typical of a precious metal. Instead of the supply changing to keep the value the same, the supply is predetermined and the value changes. As the number of users grows, the value per coin increases. It has the potential for a positive feedback loop; as users increase, the value goes up, which could attract more users to take advantage of the increasing value.
When someone tries to buy all the world's supply of a scarce asset, the more they buy the higher the price goes. At some point, it gets too expensive for them to buy any more. It's great for the people who owned it beforehand because they get to sell it to the corner at crazy high prices. As the price keeps going up and up, some people keep holding out for yet higher prices and refuse to sell.
As an additional firewall, a new key pair should be used for each transaction to keep them from being linked to a common owner. Some linking is still unavoidable with multi-input transactions, which necessarily reveal that their inputs were owned by the same owner. The risk is that if the owner of a key is revealed, linking could reveal other transactions that belonged to the same owner.
Actually, it works well to just PM me. I'm the one who's going to be fixing it. If you find a security flaw, I would definitely like to hear from you privately to fix it before it goes public.
The design supports a tremendous variety of possible transaction types that I designed years ago. Escrow transactions, bonded contracts, third party arbitration, multi-party signature, etc. If Bitcoin catches on in a big way, these are things we'll want to explore in the future, but they all had to be designed at the beginning to make sure they would be possible later.
Bitcoin is still very new and has not been independently analysed. If you're serious about privacy, TOR is an advisable precaution.
It can already be used for pay-to-send e-mail. The send dialog is resizeable and you can enter as long of a message as you like. It's sent directly when it connects. The recipient doubleclicks on the transaction to see the full message. If someone famous is getting more e-mail than they can read, but would still like to have a way for fans to contact them, they could set up Bitcoin and give out the IP address on their website. "Send X bitcoins to my priority hotline at this IP and I'll read the message personally."
Right, nodes keep transactions in their working set until they get into a block. If a transaction reaches 90% of nodes, then each time a new block is found, it has a 90% chance of being in it.
If you can keep a node running that accepts incoming connections, you'll really be helping the network a lot. Port 8333 on your firewall needs to be open to receive incoming connections.
It can already be used for pay-to-send e-mail. The send dialog is resizeable and you can enter as long of a message as you like. It's sent directly when it connects. The recipient doubleclicks on the transaction to see the full message. If someone famous is getting more e-mail than they can read, but would still like to have a way for fans to contact them, they could set up Bitcoin and give out the IP address on their website. "Send X bitcoins to my priority hotline at this IP and I'll read the message personally."
Total circulation will be 21,000,000 coins. It'll be distributed to network nodes when they make blocks, with the amount cut in half every 4 years. first 4 years: 10,500,000 coins next 4 years: 5,250,000 coins next 4 years: 2,625,000 coins next 4 years: 1,312,500 coins etc... When that runs out, the system can support transaction fees if needed. It's based on open market competition, and there will probably always be nodes willing to process transactions for free.
The problem of course is the payee can't verify that one of the owners did not double-spend the coin. A common solution is to introduce a trusted central authority, or mint, that checks every transaction for double spending. After each transaction, the coin must be returned to the mint to issue a new coin, and only coins issued directly from the mint are trusted not to be double-spent. The problem with this solution is that the fate of the entire money system depends on the company running the mint, with every transaction having to go through them, just like a bank.
You can get coins by getting someone to send you some, or turn on Options->Generate Coins to run a node and generate blocks. I made the proof-of-work difficulty ridiculously easy to start with, so for a little while in the beginning a typical PC will be able to generate coins in just a few hours. It'll get a lot harder when competition makes the automatic adjustment drive up the difficulty. Generated coins must wait 120 blocks to mature before they can be spent.
The Bitcoin network might actually reduce spam by diverting zombie farms to generating bitcoins instead.
I wish rather than deleting the article, they put a length restriction. If something is not famous enough, there could at least be a stub article identifying what it is. I often come across annoying red links of things that Wiki ought to at least have heard of. The article could be as simple as something like: "Bitcoin is a peer-to-peer decentralised /link/electronic currency/link/." The more standard Wiki thing to do is that we should have a paragraph in one of the more general categories that we are an instance of, like Electronic Currency or Electronic Cash. We can probably establish a paragraph there. Again, keep it short. Just identifying what it is.
The nature of Bitcoin is such that once version 0.1 was released, the core design was set in stone for the rest of its lifetime. Because of that, I wanted to design it to support every possible transaction type I could think of. The problem was, each thing required special support code and data fields whether it was used or not, and only covered one special case at a time. It would have been an explosion of special cases. The solution was script, which generalizes the problem so transacting parties can describe their transaction as a predicate that the node network evaluates. The nodes only need to understand the transaction to the extent of evaluating whether the sender's conditions are met.
With the transaction fee based incentive system I recently posted, nodes would have an incentive to include all the paying transactions they receive.
You could say coins are issued by the majority. They are issued in a limited, predetermined amount.
We propose a solution to the double-spending problem using a peer-to-peer network. The network timestamps transactions by hashing them into an ongoing chain of hash-based proof-of-work, forming a record that cannot be changed without redoing the proof-of-work. The longest chain not only serves as proof of the sequence of events witnessed, but proof that it came from the largest pool of CPU power. As long as a majority of CPU power is controlled by nodes that are not cooperating to attack the network, they'll generate the longest chain and outpace attackers. The network itself requires minimal structure.
Long before the network gets anywhere near as large as that, it would be safe for users to use Simplified Payment Verification (section 8) to check for double spending, which only requires having the chain of block headers, or about 12KB per day.