There are two ways to send money. If the recipient is online, you can enter their IP address and it will connect, get a new public key and send the transaction with comments. If the recipient is not online, it is possible to send to their Bitcoin address, which is a hash of their public key that they give you. They'll receive the transaction the next time they connect and get the block it's in. This method has the disadvantage that no comment information is sent, and a bit of privacy may be lost if the address is used multiple times, but it is a useful alternative if both users can't be online at the same time or the recipient can't receive incoming connections.
Quotable Satoshi
qsbot@dergigi.com
npub1sats...sfhu
I disseminate the writings of Satoshi Nakamoto, one quote at a time.
Bitcoins have no dividend or potential future dividend, therefore not like a stock.
More like a collectible or commodity.
The heat from your computer is not wasted if you need to heat your home. If you're using electric heat where you live, then your computer's heat isn't a waste. It's equal cost if you generate the heat with your computer.
If you have other cheaper heating than electric, then the waste is only the difference in cost.
If it's summer and you're using A/C, then it's twice.
Bitcoin generation should end up where it's cheapest. Maybe that will be in cold climates where there's electric heat, where it would be essentially free.
When someone tries to buy all the world's supply of a scarce asset, the more they buy the higher the price goes. At some point, it gets too expensive for them to buy any more. It's great for the people who owned it beforehand because they get to sell it to the corner at crazy high prices. As the price keeps going up and up, some people keep holding out for yet higher prices and refuse to sell.
The target time between blocks will probably be 10 minutes. Every block includes its creation time. If the time is off by more than 36 hours, other nodes won't work on it. If the timespan over the last 6*24*30 blocks is less than 15 days, blocks are being generated too fast and the proof-of-work difficulty doubles. Everyone does the same calculation with the same chain data, so they all get the same result at the same link in the chain.
When someone tries to buy all the world's supply of a scarce asset, the more they buy the higher the price goes. At some point, it gets too expensive for them to buy any more. It's great for the people who owned it beforehand because they get to sell it to the corner at crazy high prices. As the price keeps going up and up, some people keep holding out for yet higher prices and refuse to sell.
The requirement is that the good guys collectively have more CPU power than any single attacker.
It should be noted that fan-out, where a transaction depends on several transactions, and those transactions depend on many more, is not a problem here. There is never the need to extract a complete standalone copy of a transaction's history.
You could say coins are issued by the majority. They are issued in a limited, predetermined amount.
If you're sad about paying the fee, you could always turn the tables and run a node yourself and maybe someday rake in a 0.44 fee yourself.
To implement a distributed timestamp server on a peer-to-peer basis, we will need to use a proof-of-work system similar to Adam Back's Hashcash, rather than newspaper or Usenet posts. The proof-of-work involves scanning for a value that when hashed, such as with SHA-256, the hash begins with a number of zero bits. The average work required is exponential in the number of zero bits required and can be verified by executing a single hash.
Then you must also be against the common system of payment up front, where the customer loses.
Payment up front: customer loses, and the thief gets the money.
Simple escrow: customer loses, but the thief doesn't get the money either.
Are you guys saying payment up front is better, because at least the thief gets the money, so at least someone gets it?
Imagine someone stole something from you. You can't get it back, but if you could, if it had a kill switch that could be remote triggered, would you do it? Would it be a good thing for thieves to know that everything you own has a kill switch and if they steal it, it'll be useless to them, although you still lose it too? If they give it back, you can re-activate it.
Imagine if gold turned to lead when stolen. If the thief gives it back, it turns to gold again.
It still seems to me the problem may be one of presenting it the right way. For one thing, not being so blunt about "money burning" for the purposes of game theory discussion. The money is never truly burned. You have the option to release it at any time forever.
The credential that establishes someone as real is the ability to supply CPU power.
To Sepp's question, indeed there is nobody to act as central bank or federal reserve to adjust the money supply as the population of users grows. That would have required a trusted party to determine the value, because I don't know a way for software to know the real world value of things.
Proof-of-work has the nice property that it can be relayed through untrusted middlemen. We don't have to worry about a chain of custody of communication. It doesn't matter who tells you a longest chain, the proof-of-work speaks for itself.
Eventually at most only 21 million coins for 6.8 billion people in the world if it really gets huge.
But don't worry, there are another 6 decimal places that aren't shown, for a total of 8 decimal places internally. It shows 1.00 but internally it's 1.00000000. If there's massive deflation in the future, the software could show more decimal places.
null
The main properties:
Double-spending is prevented with a peer-to-peer network.
No mint or other trusted parties.
Participants can be anonymous.
New coins are made from Hashcash style proof-of-work.
The proof-of-work for new coin generation also powers the network to prevent double-spending.
I wish rather than deleting the article, they put a length restriction. If something is not famous enough, there could at least be a stub article identifying what it is. I often come across annoying red links of things that Wiki ought to at least have heard of.
The article could be as simple as something like: "Bitcoin is a peer-to-peer decentralised /link/electronic currency/link/."
The more standard Wiki thing to do is that we should have a paragraph in one of the more general categories that we are an instance of, like Electronic Currency or Electronic Cash. We can probably establish a paragraph there. Again, keep it short. Just identifying what it is.
When someone tries to buy all the world's supply of a scarce asset, the more they buy the higher the price goes. At some point, it gets too expensive for them to buy any more. It's great for the people who owned it beforehand because they get to sell it to the corner at crazy high prices. As the price keeps going up and up, some people keep holding out for yet higher prices and refuse to sell.